马拉松氧探头,马拉松氧探头北京
1.仿生学文章
2.碳控仪CO值是不是根据炉里的CO值设定的?
减重容易维持难。每天忙着看诊、接生的妇产科乌乌医师却能在瘦身3年后,依然维持令人称羡的体型。其中的秘诀究竟是什么?
上篇谈了我的饮食心得,这次就来说说关于运动训练的部分。
当初开始运动,原本是为了在1年内挑战全马且「无痛完赛」,制定的计划因此较像是为训练而安排。(推荐阅读:减重陷阱多 5大地雷要避开)
在网路上爬文、又K了几本专业书籍,我先为自己订下了3个努力方向:
1.累积足够的跑量:
马场有句名言,「跑过的里程数不会背叛你。」要顺利完成全马,一定要有基本的跑量。因为马拉松的本质就是长跑,没有培养足够的有氧耐力是不可能完赛的!
一开始,我每周跑3~4次、每次跑50分钟左右,大约8公里。因为累积跑量和瘦身一样,「慢慢来」才是王道,不然很容易「食紧弄破碗」。若里程短时间骤升太多,肌肉、关节和韧带一下无法承受超负荷,就很容易发生如足底筋膜炎、胫骨痛等状况。
感觉体能状况提升,我才慢慢再增加里程数。
(2016年8月,我单月跑量首度破百(145K),到了12月更不知不觉就破了200K。来源:乌乌医师提供)
由于我的工作型态以夜诊居多,又属于「易爆汗体质」,我决定选择晨跑,这样训练完还能去市场买菜准备便当,也不会被突如其来的琐事打断。因此我从此开启了起得比鸡早、日出而跑,且晚上10点就熄灯睡觉的作息模式。
2 .训练肌力「打底」:
肌肉是最好的护具。跑步不会伤膝,但肌力不足跑步就会。
但肌肉该怎么练?说实话,7年医学系的解剖学、生理学,虽让我知道肌肉收缩走向或神经支配等原理,但对各部位肌肉该用什么动作练、要做几下、做几组,课堂并没有教。
我相信术业有专攻、加上不爱大型健身房人多的压迫感,决定「交给专业的来!」,选择中型健身工作室,请教练一对一指导。
一开始先从棒式、深蹲等利用自身重量为阻力的动作练起,先找到正确的出力方式、让呼吸顺畅。1、2周后再加入杠铃、哑铃、壶铃、TRX等变化,保持训练新鲜感,也给身体不同 *** 。
(健身交给专业的来,请教练一对一指导。来源:乌乌医师提供)
(各式训练能增加健身新鲜感,给身体不同 *** 。来源:乌乌医师提供)
相对于健身房内固定式的器材,这类「自由重量」的训练得用到较多核心肌群来维持身体稳定、需要更多意识达成动作控制,对运动表现和日常生活功能的帮助较高。
(划船可增进锻练上半身。来源:乌乌医师提供)
我的基本训练菜单:
想增加热量燃烧,先从大肌肉群、多关节的动作训练最有效率。
上半身:卧推、划船、弹力带辅助引体向上
下半身:深蹲、硬举、弓步蹲
举例来讲,学会正确的深蹲和硬举,身体会习惯用 *** 蹲下去拿东西,而不是反复地用腰施力。
(我自己也发现肌力提升后,久站开刀较不容易腰酸背痛,以往做超音波拿探头的肩颈酸痛也改善,算是体态改变的意外收获。来源:乌乌医师提供)
3.重新安排作息
一台车要跑得快跑得好,除了要常练车,保养维修也不能少。充足的睡眠会帮忙恢复,提升运动表现。
因此,不管是否有练跑,我都尽可能在晚上10点就寝,睡前半小时也利用滚筒放松紧绷的肌肉、并尽量不滑手机、不看电视。睡眠品质好,隔天早上6点起床也不觉得疲困。若当日训练量较大,就抓空档睡半小时午觉,对肌肉恢复也很有帮助。
(2017年至今,已无伤完赛多场马拉松。来源:乌乌医师提供)
突破减重停滞期,你可以这样做●饥饿时更要「择食」!
还是要重申,虽然有氧、重训增肌有助长期维持体态,但成功瘦身不复胖的关键还是饮食。(推荐阅读:孙俪7日减重菜单,营养师:加上这2项秘诀,更不易复胖!)
晨跑前我会先吃一点香蕉、吐司较好消化的淀粉,跑完除了大量补充水分,晨跑后早餐最常吃无糖优格加新鲜水果搭配燕麦片,1颗水煮蛋搭配1杯拿铁。
重训通常在下午,练完我会喝1份乳清蛋白补充蛋白质,也可避免练完很饿乱吃东西。因为当运动量提高,很容易感到饥饿,而饥不择食。光是吃个菠萝面包配1杯奶茶就超过慢跑1小时所消耗的热量了。
与其想着「运动是为了吃更多」,我反而会去想「都运动了,如果不重视饮食品质,辛苦的汗水不就白费了吗?」
(重视饮食品质,能让你运动流的汗水不轻易白费。来源:Shutterstock)
●目标多一点,就能永远享受运动「蜜月期」
这段过程中也曾遇到停滞期,像是上半身的脂肪消得比下半身快,或运动量高时,碳水化合物吃多,线条又变得不明显,或运动表现一直无法突破……对我来说, 突破停滞期的最好方法,就是设立多元目标。
我比较幸运的是,因为想挑战初马,我的目标一开始就不纯是瘦身、还希望体能提升,运动表现更好。所以当跑步成绩没有进步时,就看看自己的身形变好了;瘦身卡关时,我就想想自己准备的餐点更多元了、身边更多人加入自煮行列。
如果有教练,也可以帮你客观评估是否真的该休息了,并在想放弃时推你一把。这也是我建议大家初期可以找教练的原因。
简单来说,你的目标永远不能只有一个,也许你的顺序和我不同,但这些目标像套环一样,环环相扣,能在不同阶段帮你度过停滞期。3个月、半年、2年,过了新手蜜月期,自我检视的时间要越拉越长,方向目标要更多元,才能减得开开心心!
●找到自己真心喜欢的运动
也有人会问我,辛苦上班一天,晚上难道不想放松玩乐?对我来说,练跑是自己想做的事,想到眼睛一睁开就能做期待的事,自然很乐意早早入睡。因此,我也建议大家多方尝试,找到自己真心喜欢的运动。
(过去我也曾短暂接触过飞轮,练过瑜伽、空中环,到后来才误打误撞投入跑步和重训。来源:乌乌医师提供)
到目前为止,我的运动量仍保持在一周跑步3~4次,肌力训练2次。值班疲累、生理期或有活动聚餐时,我也会允许自己偶尔「跷课」,收放之间有点像放风筝,拉得太紧会弹性疲乏,完全放掉可能就再也回不来。
运动已内化成我的生活习惯,就像吃饭睡觉一样自然。健康均衡的食物是我爱自己的方式,每天运动的时段,是我与身体对话的美好时光,很多写作的灵感和生活的烦恼都在此刻抒发、释放。
我也希望鼓励更多女性开始动起来,鼓励女人不必因怀孕、为人母、更年期放弃运动这份美好的权利。所以我常玩笑地说,饮食改变我的身材,但是运动改变了我的人生。
<本专栏反映专家意见,不代表本社立场>
仿生学文章
动物仿生学
生物学家通过对蛛丝的研究制造出高级丝线,抗撕断裂降落伞与临时吊桥用的高强度缆索。船和潜艇来自人们对鱼类和海豚的模仿。
响尾蛇导弹等就是科学家模仿蛇的“热眼”功能和其舌上排列着一种似照相机装置的天然红外线感知能力的原理,研制开发出来的现代化武器。
火箭升空利用的是水母、墨鱼反冲原理。
科研人员通过研究变色龙的变色本领,为部队研制出了不少军事伪装装备。
科学家研究青蛙的眼睛,发明了电子蛙眼。
白蚁不仅使用胶粘剂建筑它们的土堆,还可以通过头部的小管向敌人喷射胶粘剂。于是人们按照同样的原理制造了工作的武器—一块干胶炮弹。
美国空军通过毒蛇的“热眼”功能,研究开发出了微型热传感器。
我国纺织科技人员利用仿生学原理,借鉴陆地动物的皮毛结构,设计出一种KEG保温面料,并具有防风和导湿的功能。
根据响尾蛇的颊窝能感觉到0.001℃的温度变化的原理,人类发明了跟踪追击的响尾蛇导弹。人类还利用蛙跳的原理设计了蛤蟆夯。人类模仿警犬的高灵敏嗅觉制成了用于侦缉的“电子警犬”。科学家根据野猪的鼻子测毒的奇特本领制成了世界上第一批防毒面具。
仿生学是人类一直使用的方法,如模仿海豚皮而构造的"海豚皮游泳衣"、科学家研究鲸鱼的皮肤时,发现其上有沟漕的结构,于是有个科学家就依照鲸鱼皮构造,造成一个薄膜蒙在飞机的表面,据实验可节约能源3%,若全国的飞机都蒙上这样的表面,每年可节约几十亿。又如有科学家研究蜘蛛,发现蜘蛛的腿上没有肌肉,有脚的动物会走,主要是靠肌肉的收缩,现在蜘蛛没有肌肉为什么会走路?经研究蜘蛛不是靠肌肉的收缩进行走路的,而是靠其中的"液压"的结构进行走路,据此人们发明了液压步行机……总之,从自然界得到启迪,模仿其结构进行发明创造.这就是仿生学. 这是我们向自然界学习的一个方面。
另一方面,我们还可以从自然的规律中得到启迪,利用其原理进行设计(包括设计算法),这就是智能计算的思想。
智能计算
智能计算,也有人称之为"软计算",就是借用自然界(生物界)规律的启迪,根据其原理,模仿设计求解问题的算法。如:人工神经网络技术、遗传算法、进化规划、模拟煺火技术和群集智能技术等。
群集智能(Swarm Intelligence)
群居昆虫以集体的力量,进行觅食、御敌、筑巢的能力。这种群体所表现出来的"智能",就称之为群体智能。如蜜蜂采蜜、筑巢、蚂蚁觅食、筑巢等。从群居昆虫互相合作进行工作中,得到启迪,研究其中的原理,以此原理来设计新的求解问题的算法。
蚂蚁算法
蚂蚁觅食时,在它走过的路上,留下外激素,这些外激素就象留下路标一样,留给后来"蚁"一个路径的标志。后面的蚂蚁,就会沿着有外激素的路径行走(外激素越多引诱蚂蚁的能力就越强)。科学家们对此进行过试验:用人造的外激素在纸上画上一条路径,对蚂蚁进行试验。结果蚂蚁果然都沿画有外激素的路径行走。
B
D
蚁穴 A
C 食物
蚂蚁寻食时,由蚁穴出发,可沿AC,也可沿ABC(见上图),设各蚂蚁寻到食物后沿原路回穴,并在路上留下外激素,那么因AC路径短,故当它们沿AC返回时,就在AC上留下两次外激素。而沿ABC返回者,因其路径长,仅回到D点,于是AD一段只留过一次外激素(即其上的外激素的浓度比AC上的浓度淡),故这时从蚁穴出来寻食者就会沿浓度大的路径AC行走……最后大多数的蚂蚁都会沿较短的路程进行寻食. 利用这个原理科学者们就设计了蚂蚁算法(进行求最短程)。
上面是个简单的原理,当然要设计出切实可行的算法,还要将模型进一步精确,如要计及外激素的挥发(即激素的浓度将随时间而逐步降低等等).
用蚂蚁算法求最短程
1.一群蚂蚁随机从出发点出发,遇到食物,衔住食物,沿原路返回
2. 蚂蚁在往返途中,在路上留下外激素标志
3. 外激素将随时间逐渐蒸发(一般可用负指数函数来描述,即乘上因子e-at)
4. 由蚁穴出发的蚂蚁,其选择路径的概率与各路径上的外激素浓度成正比
蚂蚁算法还可以应用于很多实际问题,例如用于重建通讯路由,管理公司的电话网,对用户记帐 收费等工作,任务分配问题等
不要停,继续思索
进一步,将每个蚂蚁看成是一个神经元,它们之间的通讯联络,看成是各神经元之间的连接,只不过这时的连接不是固定的,而是随机的。即用一个随机连接的神经网络来描述一个群体。这种神经网络所具有的性质,就是群体的智能
科学家们从蜻蜓翅膀末端的一块比周围略大一些的厚斑点得到了启示,从而解决了飞机机翼因剧烈抖动而破碎的现象。
蝴蝶
五彩的蝴蝶颜色粲然,如重月纹凤蝶、褐脉金斑蝶等,尤其是萤光翼凤蝶,其后翊在阳光下时而金黄,时而翠绿,有时还由紫变蓝。科学家通过对蝴蝶色彩的研究,为军事防御带来了极大的稗益。在二战期间,德军包围了列宁格勒,企图用轰炸机摧毁其军事目标和其他防御设施。苏联昆虫学家施万维奇根据当时人们对伪装缺乏认识的情况,提出利用蝴蝶的色彩在花丛中不易被发现的道理,在军事设施上覆盖蝴蝶花纹般的伪装。因此,尽管德军费尽心机,但列宁格勒的军事基地仍然无恙,为赢得最后的胜利奠定了坚实的基础。根据同样的原理,后来人们还生产出了迷彩服,大大减少了战斗中的伤亡。
人造卫星在太空中由于位置的不断变化可引起温度骤然变化,有时温差可高达两、三百度,严重影响许多仪器的正常工作。科学家们受蝴蝶身上的鳞片会随阳光的照射方向自动变换角度而调节体温的启发,将人造卫星的控温系统制成了叶片反两面辐射、散热能力相差很大的百叶窗样式,在每扇窗的转动位置安装有对温度敏感的金属丝,随温度变化可调节窗的开合,从而保持了人造卫星内部温度的恒定,解决了航天事业中的一大难题。
甲虫
甲虫自卫时,可喷射出具有恶臭的高温液体“炮弹”,以迷惑、刺激和惊吓敌害。科学家将其解剖后发现甲虫体内有3个小室,分别储有二元酚溶液、双氧水和生物酶。二元酚和双氧水流到第三小室与生物酶混合发生化学反应,瞬间就成为100℃的毒液,并迅速射出。这种原理目前已应用于军事技术中。二战期间,德国纳粹为了战争的需要,据此机理制造出了一种功率极大且性能安全可靠的新型发动机,安装在飞航式导弹上,使之飞行速度加快,安全稳定,命中率提高,英国伦敦在受其轰炸时损失惨重。美国军事专家受甲虫喷射原理的启发研制出了先进的二元化武器。这种武器将两种或多种能产生毒剂的化学物质分装在两个隔开的容器中,炮弹发射后隔膜破裂,两种毒剂中间体在弹体飞行的8—10秒内混合并发生反应,在到达目标的瞬间生成致命的毒剂以杀伤敌人。它们易于生产、储存、运输,安全且不易失效。萤火虫可将化学能直接转变成光能,且转化效率达100%,而普通电灯的发光效率只有6%。人们模仿萤火虫的发光原理制成的冷光源可将发光效率提高十几倍,大大节约了能量。另外,根据甲虫的视动反应机制研制成功的空对地速度计已成功地应用于航空事业中。
蜻蜓
蜻蜓通过翅膀振动可产生不同于周围大气的局部不稳定气流,并利用气流产生的涡流来使自己上升。蜻蜓能在很小的推力下翱翔,不但可向前飞行,还能向后和左右两侧飞行,其向前飞行速度可达72公里/小时。此外,蜻蜓的飞行行为简单,仅靠两对翅膀不停地拍打。科学家据此结构基础研制成功了直升飞机。飞机在高速飞行时,常会引起剧烈振动,甚至有时会折断机翼而引起飞机失事。蜻蜓依靠加重的翅膀在高速飞行时安然无恙,于是人们效仿蜻蜓在飞机的两翼加上了平衡重锤,解决了因高速飞行而引起振动这个令人棘手的问题。
为了研究滑翔飞行和碰撞的空气动力学以及其飞行的效率,一个四叶驱动,用远程水平仪控制的机动机翼(翅膀)模型被研制,并第一次在风洞内测试了各项飞行参数。
第二个模型试图安装一个以更快频率飞行的翅膀,达到每秒18次震动的速度。有特色的是,这个模型采用了可变可调节前后两对机翼之间相差的装置。
研究的中心和长远目标,是要研究使用“翅膀”驱动的飞机表现,以及与传统的螺旋推动器驱动的飞机效率的比较等等。
苍蝇
家蝇的特别之处在于它的快速的飞行技术,这使得它很难被人类抓住。即使在它的后面也很难接近它。它设想到了每一种情况,非常小心,并能快速移动。那么,它是怎么做到的呢?
昆虫学家研究发现,苍蝇的后翅退化成一对平衡棒。当它飞行时,平衡棒以一定的频率进行机械振动,可以调节翅膀的运动方向,是保持苍蝇身体平衡导航仪。科学家据此原理研制成一代新型导航仪——振动陀螺仪,大在改进了飞机的飞行性能,可使飞机自动停止危险的滚翻飞行,在机体强烈倾斜时还能自动恢复平衡,即使是飞机在最复杂的急转弯时也万无一失。苍蝇的复眼包含4000个可独立成像的单眼,能看清几乎360度范围内的物体。在蝇眼的启示下,人们制成了由1329块小透镜组成的一次可拍1329张高分辨率照片的蝇眼照像机,在军事、医学、航空、航天上被广泛应用。苍蝇的嗅觉特别灵敏并能对数十种气味进行快速分析且可立即作出反应。科学家根据苍蝇嗅觉器官的结构,把各种化学反应转变成电脉冲的方式,制成了十分灵敏的小型气体分析仪,目前已广泛应用于宇宙飞船、潜艇和矿井等场所来检测气体成分,使科研、生产的安全系数更为准确、可靠。
蜂类
蜂巢由一个个排列整齐的六棱柱形小蜂房组成,每个小蜂房的底部由3个相同的菱形组成,这些结构与近代数学家精确计算出来的——菱形钝角109○28’,锐角70○32’完全相同,是最节省材料的结构,且容量大、极坚固,令许多专家赞叹不止。人们仿其构造用各种材料制成蜂巢式夹层结构板,强度大、重量轻、不易传导声和热,是建筑及制造航天飞机、宇宙飞船、人造卫星等的理想材料。蜜蜂复眼的每个单眼中相邻地排列着对偏振光方向十分敏感的偏振片,可利用太阳准确定位。科学家据此原理研制成功了偏振光导航仪,被广泛用于航海事业中。
苍蝇、萤火虫、电鱼、水母,见下详述。
第五个:章鱼的吸盘~
仿生学是一门模仿生物的特殊本领,利用生物的结构和功能原理来研制机械或各种新技术的科学。据传说,我国古代著名工匠鲁班,上山伐树时,被丝矛草割破了手。他觉得奇怪,一棵小草怎么会这样厉害?经过仔细观察,他发现丝茅草叶子的边缘长着许多锋利的细齿。于是鲁班发明了木工用的锯子。据推测,古代木船的发明,是从鱼类的游泳得到了启示。在发明飞机的过程中,人们也从虫、鸟的飞行中学到了许多有用的知识。
现在,科学家们正带着定向、导航、探测、能量转换、信息处理、生物合成、结构力学和流体力学等众多的科学难题,到生物界中去寻找启示和答案。
苍蝇与宇宙飞船
令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。
每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。
仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。
从萤火虫到人工冷光
自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。
在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。
在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。
科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。
早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。
现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。
电鱼与伏特电池
自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 。人们将这些能放电的鱼,统称为“电鱼”。
各种电鱼放电的本领各不相同。放电能力最强的是电鳐、电鲶和电鳗。中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物。
电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官。这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的。由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样。电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板。单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了。
电鱼这种非凡的本领,引起了人们极大的兴趣。19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”。对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决。
水母的顺风耳
“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。
水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。
原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。
仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
碳控仪CO值是不是根据炉里的CO值设定的?
仿生学
仿生学(bionics)在具有生命之意的希腊语bion上,加上有工程技术涵义的ics而组成的词。大约从1960年才开始使用。生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。可举出的仿生学例子,如将海豚的体形或皮肤结构(游泳时能使身体表面不产生紊流)应用到潜艇设计原理上。仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。
苍蝇,是细菌的传播者,谁都讨厌它。可是苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。苍蝇的眼睛是一种“复眼”,由30O0多只小眼组成,人们模仿它制成了“蝇眼透镜”。“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。“蝇眼透镜”是一种新型光学元件,它的用途很多。
自然界形形色色的生物,都有着怎样的奇异本领?它们的种种本领,给了人类哪些启发?模仿这些本领,人类又可以造出什么样的机器?这里要介绍的一门新兴科学——仿生学。
仿生学是指模仿生物建造技术装置的科学,它是在本世纪中期才出现的一门新的边缘科学。仿生学研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和机器,创造新技术。从仿生学的诞生、发展,到现在短短几十年的时间内,它的研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力。
人类仿生由来已久
自古以来,自然界就是人类各种技术思想、工程原理及重大发明的源泉。种类繁多的生物界经过长期的进化过程,使它们能适应环境的变化,从而得到生存和发展。劳动创造了人类。人类以自己直立的身躯、能劳动的双手、交流情感和思想的语言,在长期的生产实践中,促进了神经系统尤其是大脑获得了高度发展。因此,人类无与伦比的能力和智慧远远超过生物界的所有类群。人类通过劳动运用聪明的才智和灵巧的双手制造工具,从而在自然界里获得更大自由。人类的智慧不仅仅停留在观察和认识生物界上,而且还运用人类所独有的思维和设计能力模仿生物,通过创造性的劳动增加自己的本领。鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍。相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段。这样,即使在波涛滚滚的江河中,人们也能让船只航行自如。
鸟儿展翅可在空中自由飞翔。据《韩非子》记载鲁班用竹木作鸟“成而飞之,三日不下”。然而人们更希望仿制鸟儿的双翅使自己也飞翔在空中。早在四百多年前,意大利人利奥那多·达·芬奇和他的助手对鸟类进行仔细的解剖,研究鸟的身体结构并认真观察鸟类的飞行。设计和制造了一架扑翼机,这是世界上第一架人造飞行器。
以上这些模仿生物构造和功能的发明与尝试,可以认为是人类仿生的先驱,也是仿生学的萌芽。
发人深省的对比
人类仿生的行为虽然早有雏型,但是在20世纪40年代以前,人们并没有自觉地把生物作为设计思想和创造发明的源泉。科学家对于生物学的研究也只停留在描述生物体精巧的结构和完美的功能上。而工程技术人员更多的依赖于他们卓越的智慧,辛辛苦苦的努力,进行着人工发明。他们很少有意识的向生物界学习。但是,以下几个事实可以说明:人们在技术上遇到的某些难题,生物界早在千百万年前就曾出现,而且在进化过程中就已解决了,然而人类却没有从生物界得到应有的启示。
在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇。当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来。以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量。以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使可它潜入水中。需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出。如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态。潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮。如此优越的机械装置实现了潜艇的自由沉浮。但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔。鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮。然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了。
声音是人们生活中不可缺少的要素。通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一。自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击。因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段。海军工程师们也利用声学系统作为一个重要的侦察手段。首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰。只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人。但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动。不久,法国科学家郎之万(1872~1946)研究成功利用超声波反射的性质来探测水下舰艇。用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到。根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统。人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已。岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了。
生物在漫长的年代里就是生活在被声音包围的自然界中,它们利用声音寻食,逃避敌害和求偶繁殖。因此,声音是生物赖以生存的一种重要信息。意大利人斯帕兰赞尼很早以前就发现蝙蝠能在完全黑暗中任意飞行,既能躲避障碍物也能捕食在飞行中的昆虫,但是堵塞蝙蝠的双耳后,它们在黑暗中就寸步难行了。面对这些事实,帕兰赞尼提出了一个使人们难以接受的结论:蝙蝠能用耳朵“看东西”。第一次世界大战结束后,1920年哈台认为蝙蝠发出声音信号的频率超出人耳的听觉范围。并提出蝙蝠对目标的定位方法与第一次世界大战时郎之万发明的用超声波回波定位的方法相同。遗憾的是,哈台的提示并未引起人们的重视,而工程师们对于蝙蝠具有“回声定位”的技术是难以相信的。直到1983年采用了电子测量器,才完完全全证实蝙蝠就是以发出超声波来定位的。但是这对于早期雷达和声纳的发明已经不能有所帮助了。
另一个事例是人们对于昆虫行为为时过晚的研究。在利奥那多·达·芬奇研究鸟类飞行造出第一个飞行器400年之后,人们经过长期反复的实践,终于在1903年发明了飞机,使人类实现了飞上天空的梦想。由于不断改进,30年后人们的飞机不论在速度、高度和飞行距离上都超过了鸟类,显示了人类的智慧和才能。但是在继续研制飞行更快更高的飞机时,设计师又碰到了一个难题,就是气体动力学中的颤振现象。当飞机飞行时,机翼发生有害的振动,飞行越快,机翼的颤振越强烈,甚至使机翼折断,造成飞机坠落,许多试飞的飞行员因而丧生。飞机设计师们为此花费了巨大的精力研究消除有害的颤振现象,经过长时间的努力才找到解决这一难题的方法。就在机翼前缘的远端上安放一个加重装置,这样就把有害的振动消除了。可是,昆虫早在三亿年以前就飞翔在空中了,它们也毫不例外地受到颤振的危害,经过长期的进化,昆虫早已成功地获得防止颤振的方法。生物学家在研究蜻蜓翅膀时,发现在每个翅膀前缘的上方都有一块深色的角质加厚区——翼眼或称翅痣。如果把翼眼去掉,飞行就变得荡来荡去。实验证明正是翼眼的角质组织使蜻蜓飞行的翅膀消除了颤振的危害,这与设计师高超的发明何等相似。假如设计师们先向昆虫学习翼眼的功用,获得有益于解决颤振的设计思想,就可似避免长期的探索和人员的牺牲了。面对蜻蜓翅膀的翼眼,飞机设计师大有相见恨晚之感!
以上这三个事例发人深省,也使人们受到了很大启发。早在地球上出现人类之前,各种生物已在大自然中生活了亿万年,在它们为生存而斗争的长期进化中,获得了与大自然相适应的能力。生物学的研究可以说明,生物在进化过程中形成的极其精确和完善的机制,使它们具备了适应内外环境变化的能力。生物界具有许多卓有成效的本领。如体内的生物合成、能量转换、信息的接受和传递、对外界的识别、导航、定向计算和综合等,显示出许多机器所不可比拟的优越之处。生物的小巧、灵敏、快速、高效、可靠和抗干扰性实在令人惊叹不已。
仿生学的现象
苍蝇与宇宙飞船
令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。
每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。
仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。
从萤火虫到人工冷光
自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。
在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。
在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。
科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。
早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。
现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。
电鱼与伏特电池
自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 。人们将这些能放电的鱼,统称为“电鱼”。
各种电鱼放电的本领各不相同。放电能力最强的是电鳐、电鲶和电鳗。中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物。
电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官。这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的。由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样。电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板。单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了。
电鱼这种非凡的本领,引起了人们极大的兴趣。19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”。对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决。
水母的顺风耳
“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。
水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。
原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就刺激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。
仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
-- 结构构件
对于构件,在截面面积相同的情况下,把材料尽可能放到远离中和轴的位置上,是有效的截面形状。有趣的是,在自然界许多动植物的组织中也体现了这个结论。例如:“疾风知劲草”,许多能承受狂风的植物的茎部是维管状结构,其截面是空心的。支持人承重和运动的骨骼,其截面上密实的骨质分布在四周,而柔软的骨髓充满内腔。在建筑结构中常被采用的空心楼板、箱形大梁、工形截面钣梁以及折板结构、空间薄壁结构等都是根据这条结论得来的。
-- 斑马
斑马生活在非洲大陆,外形与一般的马没有什么两样,它们身上的条纹是为适应生存环境而衍化出来的保护色。在所有斑马中,细斑马长得最大最美。它的肩高140-160厘米,耳朵又圆又大,条纹细密且多。斑马常与草原上的牛羚、旋角大羚羊、瞪羚及鸵鸟等共外,以抵御天敌。人类将斑马条纹应用到到军事上是一个是很成功仿生学例子。。
补充-- 最新发展:
仿生学与遗传学的整合是系统生物工程(systems bio-engineering)的理念,也就是发展遗传工程的仿生学。人工基因重组、转基因技术是自然重组、基因转移的模仿,还天然药物分子、生物高分子的人工合成是分子水平的仿生,人工神经元、神经网络、细胞自动机是细胞系统水平的仿生,跟随单基因遗传学、单基因转移发展到多基因系统调控研究的系统遗传学(system genetics)、多基因转基因的合成生物学(synthetic biology),以及纳米生物技术(nano-biotechnology)、生物计算(bio - computation、DNA计算机技术的系统生物工程发展,仿生学已经全面发展到一个从分子、细胞到器官的人工生物系统(artificial biosystem)开发的时代。
碳控仪里面都有一氧化碳的设定值,是可以在线或者手动修改的,为了得到准确的测量结果,这个值不能设置为实际炉内的CO含量。虽然在计算由氧势计算碳势的时名义上是一氧化碳系数,你必须根据定碳的结果在结合碳控仪的查表值修改一氧化碳系数,如果没有这样的图表,那么你可以根据定碳结果,调整这个参数,直到碳控表显示的碳势和你定碳结果一致。因为氧化锆测碳势,是换算出来的,炉内气氛CO,CO2,CH4含量都会影响实际的碳势,准确的说,应该将这些含量变化波动的结果通过定碳或者三气分析的方法折合一氧化碳系数中来修正碳控仪,所以有的碳控仪表生产厂家把这个系数都不叫一氧化碳系数,叫工艺系数。